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1. Introduction
The mathematical treatment of the coupled motion of hydredynamic

flow and electrornagnetic fields has assumed great importance recently.

In the study of non-relativistic magnetohydrodynamics it is customary

to adopt only the quasi-equilibrium approximation to the electrodynamic

equations in which the displacement currents and charge accumulations

are ignored. Such an analysis merely allows the possibility that the
locities, bothrandom and ordered, of fluid elements are comparable
;th the classical velocity of sound. Recently various attempts have been

ade to give a covariant formulation to magnetohydrodynamics in which the

(CODE)
(CATEGORY)

»ove-mentioned approximations are not introduced. In.this paper we zre
iterested in the motion of sonic discontinuities with such a covariant

prmulation. Pioneering work in the field of wave motion has been done by

e Hoffman and Teller [ 7], Reichel [11] , Zumino [ 16], Akhieser and

MBER)

Solovin [1 ] , Coburn [2,3], Bruhat [5], Saini[12], Giere [6] and others

D

There are some disagreements in various results obtained by these authors.

I
e plan to compare and extend the salient features of their analysis in the

(NASA CR OR TMX OR A

’\ ollowing sections.

v Relativistic hydrodynamics has been formulated and put on firm
foundations by various authors, while the equations of electrodynamics

lend themselves readily into covariant description. Therefore the coupling

of these two fields becomes rather simple. Recently Thomas [ 15 ] and

Edlen [4] have given a discussion of relativistic hydrodynamics and

re-defined the equations governing the flow of a perfect relativistic gas.

.
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We couple these modified equations with those of electrodynamics. The
total energy tensor, thus obtained, enables us to compare various known
results on wave motion. . We consider only those fluids which have infinite
conductivity.

We consider a weak disturbance whose propagation can be repre-
sented by a time-like hypersurface in an Einstein-Riemann space. By
using the concept of singular surfaces across which all the magnetohydrodynamic
quantities are continuous but the first derivatives of at least one of these
quantities is discontinuous, we obtain various speeds of propagation of these
surfaces. We then compare our results with the known results in this field.
Furthermore, by taking a suitable metric we give a space-time representation
of our analysis. This enables us to compare the present discussicn with
that known for non-relativistic magnetohydrodynamics. We find that qualita-
tively the present results are similar to the ones known for the ncn-relativistic
case. In fact, we have three kinds of waves - slow, intermediate and fast.
The possibility of any of these waves exceeding the speed of light is excluded
since we have taken the wave normals to be space like.

The description of the propagation of these wave fronts is made more
quantitative by employing the classical theory of ray optics. By rep;esenting
the wave front as the surface of f(x, t) = o, the equations which give various
wave speeds become first-order partial differential equations in the function
f. These equations, in turn, have characteristics which are described as
curves rather than cones. These curves are called bicharacteristics or
rays. For each category of waves - slow, inter.mediate or fast - we have a
direction field of rays along which the wave fronts propagate. We derive the

equations for these rays. From the discussion of these equations it fcllows
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that the bicharacteristics corresponding to the intermediate waves always
lie in the plane determined by the velocity and magnetic 4 - vrectors.

The geometrical shape of the wave fronts can be analysed with the

help of the equations for the rays. However, it is simpler to discuss
the geometry of wave fronts with the help of the surfaces of wave normals.
We derive the equations for these surfaceé for all the three waves. 1t
turns out that, as in the non-relativistic case, the surface of the wave
normals for the intermediate wave consist of two planes. The corresponding
surfaces for slow and fast waves are two distinct nappes of a conoid; the

surface of wave normals for the intermediate wave always touches this conoid.

2 . Fundamental equations

Let AR denote the metric components of an Einstein-Riemann space

(referred to hereafter as E-R space) and let WA stand for the covariant

components of the unit time-like velocity 4-vector W. The capital Roman
indices have the range 0, 1, 2, 3, and are subject to the summation con-

vention over this range. Thus

gABWAWB=1 . (2.1)

The momentum-energy tensor with components T

(an) and T!ég) .
(m)
AB

AB 18 composed of two

parts T

The material part T is given as

T(m)"c2 pW, W

AB A Wg -P8ap’ (2.2)

where p is the mass-energy density, p is the pressure and c is the velocity

of light in vacuum. The components Ton have the dimensions of energy.

(e)

The electromagnetic part T AB

is defined for infinitely conducting
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fluids in terms of the electromagnetic skew-symmetric tensor with

components HAB s 38

e) . 1 [1 cD c
Tap= 7 \* 8aB (H "Hep) -Hy Heg o (2.3)

where the constant p is the magnetic permeability. Let us now introduce

the magnetic 4-vector h with components h, [10]:

1 % B
Pa=—5 Hpa W . (2.4)

¢
where the components HAB of the dual electromagnetic tensor are defined

by the formulae

* CD

Hpyp = 2Mapcp H s (2.5)

and MABCD 2T¢ the components of the customary permutation tensor.

In terms of these skew-symmetric tensors the Maxwell equations become

AC _ % _ 1 B_.B
g Hpp.c=0 THI?A—J , (2.6)

where JB are the components of the current 4-vector Jand the semicolon
denotes the covariant differentiation formed on gaB The electric 4-vector

with components e, is defined as

A

ey =Hp, W (2.7)

In view of the skew-symmetry of HAB’ it readily follows that both the

electromagnetic 4-vectors are orthogonal to W:

wh=e wo=o. (2.8)

Furthermore their components in a rest frame i.e. w©° = 1, w! = 0,
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coincide with the magnetic and electric 3-vectors with components
Hi and Ei' In these expressions as well as in the sequel, the Latin
indices will have the range 1, 2, 3. For infinitély conducting fluids,
it follows from Ohm's law (for a critical discussion see Coburn [2]

and Reichel [ 11] that e, = 0. Therefore the relation (2.7) becomes

H W~ = 0. (2.9)

BA

This means that the 4-vector W lies in the null domain of the skew-
symmetric matrix ( (HAB) ). Hence the rank of this matrix is less than
four. But an antisymmetric matrix has always an even rank. Thus the
rank of this matrix is two. From the definition of the dual tensor it

ale
b4

follows that the matrix defined by the components H has also rank

AB
two and that the 4-vector w lies in its non-null domain. Furthermore
.3 :
since H'AB hB # o, the vector halso lies in the non-null domain of this

matrix. Since we have two mutually orthogonal vectors lying in the
*
non-null domain of the skew-symmetric matrix ( (HAB)' ) of rank two, we

can decompose it into the bivector form [ 13 ]
H* = h h 2.10
AB = W(Wphpg - Wgh,) (2.10)

where the coefficient p is accounted for by the relation (2.4).

Hence

c.D

H h. (2.11)

AB -~ Fapcp W

Substituting (2. 10) into the first of the equations (2. 6) we obtain an equation

for the determination of the vector h:
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w® wB - nP WA);B =0. (2.12)

Once we have found_}_x_,_ we recover the quantities HAB and J from the

equations (2.12) and the second equation (2.6). To evaluate Tg}; as given

by the equation (2.3) we observe the following simple relation

HOP - 2p? h n? - -2p?

H A h

z, (2.13)

CD

where we have used the fact that h , being orthogonal to the time-like

vector W, is a space-like 4-vector. Similarly

C

-
HGH g = & {(gAB -wAwB)|h| + hAhB} (2.14)

Substituting (2.13) and (2. 14) into the equation (2. 3), we have

) - {(w TS hlz - hAhB} (2.15)

which is a symmetric tensor. Let us observe in passing that

(e) AB _ , _ (e). AB
wAT;B -O--hAT;B - (2.16)
We are now in a position to write down the complete value of TAB
in terms of two unknown vectors W and h:
= 2 -1 {h|? -
TaoB ¢ P WaWg Pt M{(‘"’M"}a L) |nl hAhB}'
(2.17)
The Einstein field equations of general relativity imply that
AB _
T B = 0. (2.18)

When we substitute (2.17) into (2.18) we get the required partial differential

equations.
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3. Definitive System of equations

Let us collect all the necessary equations and put them in the
form needed in the subsequent analysis. In that connection the relation

(2.1), when differentiated yields

wtw = 0. (3.1)

W h, o + W h, =0. (3.2)

The field equations (2.12) are

B, A A_B B, A A B _
Woh'p + KOWIL - hoWi - WORUL = 0. (3.3)

The conservation law (2. 18) becomes

B

(czp,B) whiwP 4 (c?p+ 1 ‘h‘z)(wAwa‘B + W

AB AB_ 1 _AB, .c
-P,g &  -2dWWT- 3 g7 )h hig
A A -
-wh’ ghy + B hy ) = 0. (3.4)

The thermodynamic relation, required for the present analysis, expresses

the condition that [15 ]

: A A
P AW -afp ,WT =0, (3.5)

where

a? = X2

o (3.6)

and y is a material constant. As we shall soon see that difference in
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various characteristic relations, obtained thus far, is accounted for by
the difference in the thermodynamic relations. Except for the identity
(3.2), we have now ten equations (we count (3.1) as one equation, derived

ag it is from a scalar equation (2. 1))in ten unknowns W, h, p and p.

4. Sonic disturbances

We consider a weak disturbance whose position can be represented
by a three-dimensional time-like hypersurface X (t), called a 3-wave, in
the E-R space. Any time section t = constant, of ¥ will be a two
dimensional surface S(t), called the 2-wave, in the three-dimensional
Riemann space R(t). Let NA be the components of the unit space-like

4-vector N which is normal to £ (t). Furthermore let the bracket [F ]

stand for the jump of F across the sonic discontinuity. We assume that
[p] =[p] =[W l=1[n,] =[gypl =lepp,cl =lepg,cp! =0 (4.1)
When [F] =0, but [FA] # 0, it can be shown that
[F;A] = N, 8F, (4.2)

where 8F is the strength of the discontinuity. Moreover, since the
components of the metric tensor and their first derivatives are continuocus,
it follows that the jump in the covariant derivatives of a quantity is equal
to the jump in the ordinary derivatives. Also since the second derivatives
of the components of the metric tensor are also continuous, it follows from
the Einstein field equation that the quantities TAB are continuous across the
wave front.

Applying the jump condition (4.2) to the system of equations (3.1)

5 {(3.5), there result the relations




A - 0.
whsw, = o; (4.3)
A, A
whsn, = - n,swh, (4. 4)
Lob® + nfNgswP . hysW™ - wAN8nP= o; (4.5)

c2LWR6p + (cZp + wlhl?) (WANZ6WD + Low?) - N%6p - p (2LW* - N*)n_sn°

" A B
- w{8h + h"'N_6&h)= 0, 4.6
u(snny o 807) (4.6)
and
Sp=a’ép (4.7)
A _ LA
where L. = W NA’ anth-h NA‘

5. Alfven waves.

Let Tp stand for the components of the tangent 4-vector T to the
wave front. We shall take such a tangential direction T that it is orthogonal
to the 3-base N, W, and h. If we multiply (4.5) and (4. 6) by Tand sum on the

repeated index A, the foliowing two relations result

Léhy, - hydW,, = 0, (5.1)

N

and

2 1247 54 _ -
(c®p + ul hI )LBWT HhNBhT =0, (5.2)

where ShT = GhATA and 5WT = GWATA. These two equations will give a

non-trivial solution for (BhT, 6WT), if we have

L3c%p + p|h,|2) - phlz\I = 0. (5.3)
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Let us now define

V = cL =chNA, (5. 4)
then (5.3) gives
_ 2
V2= e\ (5. 5)
p + plhf2/c?

This relation, as we shall soon see, leads to the Alfven wave of non-
relativistic magnetohydrodynamics. It is independent of the thermo-
dynamics in the above analysis. The same relation holds for incompressible

as well as compressible fluids.

6. Fast and Slow Waves.

We start with the field equation (4.5). Multiplying it by WA ,

summing on the repeated index A, and using (4.3) and (4.4), we derive

A
LWAGh —NB

sh® = - Lh, sw" . (6.1)

Similarly if we multiply (4.5) by hA’ and sum on A, it yields

A1 B A
b, 6h" = + (|n|? Np8W"~ + hyh,6W"). (6.2)

Let us now replace 6p with a? §p in the equation (4.6), as implied

by the relation (4.7); multiply the resulting equation by h,; use some of

A

the other identities as derived above, it leads to the relation:

2
swh=1 2 LP

A - - by =E (6.3)

Similarly if we multiply the equation (4.6) with W and N and sum on the

index A, we get
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N 5WB

- a® \6p
B —"L(l-—-—-)—é—

c?

272 2 1 2.2 ,_ 2 B u A _
(c*L? + %) 8p + - (2L7c? p uln| INg6 W™ - £ h h sW™ = 0.

N
Substituting from (6.3) and (6.4) into (6.5), we readily obtain
{(Z_a 2.c?)pc? LA - ((a? -cz)‘.u]h'2 - a?c?p)L.? - a? uh3g)iép = 0.

But 8p# 0; as such (6.6) gives
(c?-2a%)pc?it - {(’c”“:éaz)p ‘h!z + ach:zp}Lz + a? phlfI =0,

In terms of V, as defined by (5.4), the above relation becomes

2 2
(I-Ej—-—)p A —{(1-32—) plhlz + azp}V2 + azthI: 0
c c

When hA = 0, the equation (6.8) reduces to the one found by Thomas for

uncharged fluids.

7. Comparison with known results.

If we take [14]

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

P=r, (l+-—§— + =B ), (7.1)

2 2
C C
pO

where Po and e are the rest density and the rest internal energy respectively,

the relations (5.3) and (5.7), agree with those found by Coburn [2].
To get the corresponding characteristic equations as derived by

Bruhat [ 5], we set
psp+p, + .c = 1, (

and take the thermodynamic relation. which gives

7.2)



6p = a2 6 p, a2 =9p 2 (7.3)

The modification in our analysis starts with the equation (3.4). It becomes

1 n ~
. (8 +p) 5 WOWD + (BrpruPywiw® _rwBwh
* AB A,,B 1 AB C
'p’Bg = ZH'(W w -2 8 )hch ,B -
A A _ \
-u(h’gh g +h® g p) = 0 (3.4)

If we go through the same algebraic steps as with (3.4) and the related
system of equations, the characteristic relations corresponding to (5. 3)

and (6.7) become

L* (p+p+u [h[P) = phd =0, (5.3)"
and
(1-a%) (p +p)L* -{(p. Ih|? +2a (+ p)}LZ + a2 b hZ = 0. (6. 7)"

These agree with the ones found by Bruhat.

Finally, it we take the relation (7.1) and assume the thermo-

. dynamic equation which leads to
d
= 52 2 . 9p
. 6p-—a° 6p0, ag = dpo . (7.4)

The relation (5.3) is unchanged while (6. 7) is modified into:
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{(cz + et+plp ) - a(z) }po(c2+e+p/po)L4

2 2 2 2 2 2 -
-{(poao + p[hl ) (c“ +e + p/po)}L +aZ u hN =0, (6.7)"
which agrees with the result found by Saini [12] and Giere[6].

8. A space-time representation.

A coordinate system can be introduced in the E-R space for which

the square of the element of length ds?, has the form
ds? = c? dt? - aijdxldx-], (8.1)

where aij are the coefficients of a positive definite quadratic form.
These coefficients, in general, depend on the coordinate t, as well as
the spatial coordinates x. Relative to this coordinate system the

velocity 4-vector becomes

-v.
-— C . -— 1
Wo = 2.2 Wy = 27 .2
N1-v2/c N 1-v2/c
w° = 1 . Wi_ vt (8.2)
- T e ) - _—— .
cN 1-v? /c? cN 1-v2/c?

where v, and v’ are the covariant and contravariant components of the
i
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velocity vector in the three-dimensional Riemann space R(t) whose
metric is defined by the above quantities aij(t’x)’ and v is the magnitude
of this velocity.

The electromagnetic 4-vector h is now given as

(H.v') H, (E x v).
1 1 - =1
ho = oo ’ hi S = - m—
N 1-v¥c? N1-v¥ct  ueN 1-viic?
(H.v}) . i i
n° = ._.__..____1 s n = .H. + L’E' X____x) (8.3)
ciN1-v?/c? 1-v¥c?  peN1-v?/c?

Similarly the normal 4-vector N has the decomposition

-1n.
N:...—.E__.._.'N,: 1

° N1-G?¥/c? Coi N 1-G2/c?

N© G i nt
—_——— ’ N = —_—— ,
cW1-G?/c? N1-G?/c?

n

(8.4)

where n, and ni are the covariant and contravariant components of the
unit normal to S(t) in the space R(t) and G is the normal coordinate
velocity of propagation of 5(t) in R(t). The direction of N is chosen,

for definiteness, so that the associated vector n is directed into the
region of R(t) into which the surface S(t) is propagated; then the velocity

G is positive.

5

The quantities L, V, hand |h|? become

N

A Gr"V'n
L=N"W, = s (8.5)

A )
cN 1-G2/c? N1-v®/c?
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G - v
VzclL = — e— (8.6)
N1-G¥c? N1-v2/c?
A HIG H_ | (Exyna
hN = hAN = . - -
ciN1-G?/c? N1-v2/c? N 1-G%/c? cN1-v?/c? N1-G?/c?
(8.7)
and
(H.v')2 2HYE x v).
Ih'z =thhA=‘ = + H? + — -—1+](E.‘X3L)l2
c?(1-v2/c?) (1-v¥c?) ne(l-v2/c?)  u2c?(l1-v?/c?)
(8.8)
From (8.6), (8.7) and (8.8) we observe the important fact that when
Y.< 1, S «<,
c C
we have
V ~ G-v_ 28y, (8.9)
hy ™~ - Ho, (8.10)
| nf% ~ H2 . (8 .11)

From (7.1) we observe that

P ™Pyo

and therefore a ~ the velocity of sound in non-relativistic uncharged

fluids.
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When we make these substitutions in the characteristic relations

(5.3) and (6.7), they become in the non-relativistic limit

2 . 2
U= Hn/po. (8.12)
and

P U* - (kH? + a%p )U? + a?uH? = 0. (8.13)

In fact they become obvious if we start with the equations (5.5) and (6. 8),
instead. These two relations agree completely with those obtained in
non-relativistic magnetohydrodynamics [8] . The same is of course true
of (5.3)', (6.7) and (6.7)". Qualitatively the results in the present case
are gimilar to those in non-relativistic case. There are slow, inter-
mediate and fast waves. The velocities of these waves are, however,
comparable with the vélocity of light but none can exceed that velocity.
This follows from the Darmois-Lichnerowicz formula [ 9] for the

speed uof wave propagation:

c'g '.WANA
u? = T X . (8.14)
W'N, -N"N,
Since NANA = -1, we get thatu < c .

Various other known results in connection with the characteristics

can be deduced from the foregoing ones as special cases.

9. Bicharacteristics

The analysis in this section concerns the theory of rays as based on
the characteristic relations (5.3) and (6.7). Let tne hypersurface = (t)

have an equation:

f(x,t) = 0, (9.1)
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then the components NA are defined as

N, =f | CD R |
A ,A/~/|g ffp | . (9.2)
In terms of £ A We can write the characteristic relations (5.3) and
(6.7) as
A A
F(E 5) = (WhE )72 + hP) - pin®s )7 =0, (9.3)
and
/ A i , | opA CD
F(£ 5) =lc?-2a%) pe? (WOE ,)* +q(c?-a®)u|nf+ azc?rp}(w £ A (e f of p)
2 A 2, CD _
-atuhf 4 ) g T f ) = 0. (9.4)
. AB AB
We have taken advantage of tne relation |g f,Af,Bl =(-g" f Af ). The

equations (9.3) and (9.4) are first order partial differential equations
for determining the integral surface f. This integral surface is spanned
by characteristic rays. These rays are called the bicharacteristics for
the original equations and are determined by the ordinary differential

equations

A
dx = oF ; (9.5)

ds o (f,A)

with s defined as a parameter along the bicharacteristics. Substituting

from (9.3) and (9.4) into (9.5) leads to

b A (9.6)

A
-1

A
1 dx A D D
Frg =W (c® + ph|FIWTE - b7 )k




R
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‘ v D .
by) =% %-’;—;[w -2a%)p (WL LF +{(c2- a®)ufnf* + azczp}WDf,D(gABf,Af,B) _]WA
A
+ [{(cz-azm h? 4 azczp}(w’)f,yz - a? u(th,DF] "5t 4

_.2..D AB A
a®u(h™f H)g f,Af,B)h . (9.7)

The corresponding differential equations for rays based on (5.3)',

(6.7)" and (6.7)", can be read off from the above relations. The following

qualitative discussion is the same for all such rays.

From (9.6) we observe that_}_g(l’)lies in the plane of the orthogonal
4-vectors W and h. The rayl_l_)(z«)will also lie in the same plane if N does.
We now set out to investigaté that possibility.

We have h//|h|, as a unit space-like vector and W, as a unit time=
like vector. Let us introduce two new mutually orthogonal 4-vectors
Y and Z, which are orthogonal to the 2-base determined by W and h/| h |.
Hence both Y and Z are space-like and span the null domain of H*AB
and therefore they span the non-null domain of HAB. Thus we can decom-

pose H‘AB, in terms of YA and ZA, getting (in view of the relations (2.10)

and (2.11)):
HB = n| (v82B - z2¢B). (9. 8)

The vectors W, l1/| h|, Y and Z form a 4-tuple of mutually
orthogonal unit vectors; W is time-like and (h/ |h [, Y, Z) are space-like.

We can represent the components NA as

N, = AW

A +BhA/]h|+CYA+DZA. (9.9)

A
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A

Since NAN = -1, this gives
A%® -B?* .C?-D?% = -1. (9
Also
L = A, hy = -B|hl. (9.

The characteristic relations (5.3) and (6.7) become-

(ulhlz +"czp JAZ - plh|2 B =0, (9.

and

(2 -2a%)c?pat -{(cz-az )p]h |z+a."‘czp}Az +a? | .[h IZBZ =0, (9.

If the normal N is to lie in the 2-base determined by W and h

then from (9.9) and (9. 10) it follows that

C=D-=0, (9.

and
A%2 - B2 =], (9

Thus A and B satisfy the equation for-a hyperbola as given by (9.15).
The intersection of this hyperbola with the curve given by the equation

(9.12) yields

1
1 r 2 ¥
A = (u/c?p)? |h|;B==t¢Ll+ﬁJ§-|--} . (9.
ctp

Similarly the intersection of this hyperbola with the curve given by

(9.13), leads to

.10)

11)

12)

13)

14)

. 15)

16)
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1

A=a/ (cz—zaz)E , B = f{(cz-az) / (cz-Zaz)}~ : (9.17)

[ME

and the same roots as given by the relation (9,17) for Alfven waves. In
fact the equation (9.12) becomes a factor of (9.13) when B2 = 1 + A2,
From (9.16) it follows that there exist two wave normals which lie in the
base (W, h) provided c? >2a%. The corresponding condition for Bruhat's
s s Vo
analysis is 1> a“.
Finally we observe from (9.10), (9.12) and (9.13) that A = B = 0;

C? + D? =1, satisfy these equations. Thus there are »' characteristic

hypersurfaces such that W and h lie on their local tangent hyperplanes.

10. Geometry of the wave fronts.

L.et us set

(10.1)

f,a=%a"

The equations (9.3) and (9.4) then become

F(X,) = (c2p+ p|hP)WAX )2 -p(m®X )2 = 0 (10.2)
A PRI AV TR Sy ' :
A A CD
F(XA) = (c?-2a%)pc?(W XA)" +{(c2 -a?) |h|2 + azczp} (W XA)Z(g XCXD)
2 Ay 12, CD _

- a® pth XA) (g XCXD) =0.

(10.3)
The equation F(XA) = 0, represents, for fixed (x, t), a surface in
X-space called the surface of wave normals. Let us take the Lorentz
frame at the point (x,t) such that, goo =1, gi‘j = - 6ij. Let us also
define a 4-tuple of mutually orthogonal vectors e,re1, 2,83 at that point.

For e and e we take W and h/|h| respectively. The equation (10.2)

which gives the wave normal surface for Alfven waves becomes
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(clp+p+ p |h|2)X2-uX?=o0. (10.4)

Factoring the right member of the equation (10.4) we obtain two planes
in the E-R space.

The equation (10.3), similarly, gives

{(‘cz-az)(czp+p|h|'?-)} x04 -[(c’:z-az)plh-|z~+ azczp}(Xf + X3 + X3

+ aZp |h? 5(?-] X3 + a? p|h|? XF (Xt + X3 + XEZ)=0,, (10.5)

which is the equatidn for a conoid. The intersection of this conoid with a
straight line shows that it is composed of two distinct nappes Cf (for

fast wave} and CS (for slow wave). The nappe C; is interior and is convex.
The light cone is interior to Cf. The two planes, which comprise the
surface of the wave normals for the Alfven wave, always touch the conoid
given by equation (10.5). The geometrical shape of these wave normal
surfaces is thus the same as in the case of non-relativistic magnetohydro-
dynamics. Since the diagram of wave fronts can be constructed from the
surfaces of wave normals, by a simple geometrical device, it follows

that all the known geometrical facts about the magnetohydrodynamic

wave fronts are applicable to the present case [81].

2

Finally we observe that when c? = 2a2, the equation (10.3) has a

factor

gCD XCXD =0, (10».6)

which is the equation of the light cone. In this case the light cone coincides
with the nappe Cf of the fast wave.
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